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Abstract

The mapping between nonsymbolic quantities and symbolic
numbers lays the foundation for mathematical development
in children. However, the neural mechanisms underlying
this crucial cognitive bridge remain unclear. Here, we in-
vestigate the computational principles governing symbolic-
nonsymbolic integration using a biologically inspired neural
network trained through developmentally inspired stages. Our
investigation reveals that generalization from nonsymbolic to
symbolic numerical processing emerges specifically when rep-
resentational alignment forms between these numerical for-
mats. Notably, this alignment appears to be stronger in cross-
format comparison-based mapping compared to direct-label-
based mapping. Furthermore, we demonstrate that subsequent
symbolic specialization creates a representational divergence
that impairs nonsymbolic performance while maintaining the
ordinal structure of the mapping. These findings highlight rep-
resentational alignment as a fundamental mechanism in nu-
merical cognition and suggest that targeted cross-format com-
parison tasks may be particularly effective in improving math-
ematical learning in children with numerical processing diffi-
culties.
Keywords: Emergence of number semantics, Representa-
tional alignment, Artificial neural network

Introduction
Numbers are fundamental to human cognition and shape how
we measure and make sense of our world. In the early stage
of learning, children can discriminate and compare quantities
in different perceptual domains, such as different numbers of
visual objects, sounds, or physical touches (Lipton & Spelke,
2003; Xu & Spelke, 2000). As development progresses, chil-
dren acquire counting skills, which fundamentally involve
mapping quantities to symbolic representations such as num-
ber words (Wynn, 1990; Sarnecka & Carey, 2008). The
successful formation of these symbolic-nonsymbolic associ-
ations proves critical for subsequent mathematical develop-
ment (Holloway & Ansari, 2009; Schwartz et al., 2021).

A distinctive characteristic of humans’ numerical repre-
sentations, in both symbolic and nonsymbolic domains, is
adherence to Weber’s law (Krueger, 1984; van Oeffelen &
Vos, 1982). This psychophysical principle reveals that perfor-
mance in numerical tasks depends on the ratio between quan-
tities rather than their absolute difference, suggesting similar
underlying representational mechanisms for both symbolic
and nonsymbolic numbers. Neuroimaging evidence further
supports this view, demonstrating that neural representations
of symbolic and nonsymbolic numbers show substantial sim-
ilarities early in development, before diverging as individu-

als gain expertise with symbolic numbers (Park et al., 2024).
This developmental trajectory suggests that the neural num-
ber system evolves in stages—initially establishing mappings
between nonsymbolic and symbolic representations to facil-
itate generalization, before refining symbolic representations
to enhance performance on symbolic tasks. However, the pre-
cise neural mechanisms supporting this mapping process and
its role in generalization remain poorly understood.

In this study, we investigate the neural representation
of numerical cognition by simulating both symbolic and
nonsymbolic number processing in a biologically inspired
neural network using comparison tasks. Drawing on de-
velopmental trajectories observed in children’s mathemati-
cal learning, we implement a three-stage training sequence:
(1) nonsymbolic training where the model learns to com-
pare dot arrays, (2) mapping training where connections be-
tween symbolic and nonsymbolic representations are estab-
lished, and (3) symbolic training where the model learns
numeral comparisons. Crucially, we compare two distinct
mapping approaches—cross-format comparison (where the
model compares quantities across different formats) and
cross-label mapping (where both formats are associated with
the same labels)—to understand how different learning path-
ways affect representational development and generalization.

Neurophysiological studies have identified ”number neu-
rons”—neurons selectively tuned to specific quantities—in
both non-human primates and artificial neural networks
(Nasr, Viswanathan, & Nieder, 2019; Kim, Jang, Baek, Song,
& Paik, 2021; Mistry, Strock, Liu, Young, & Menon, 2023;
Chapalain, Thirion, & Eger, 2024). These specialized neu-
rons emerge even without explicit numerical training when
exposed to nonsymbolic stimuli such as dot arrays (Nasr et
al., 2019; Kim et al., 2021). Furthermore, research sug-
gests that linear representational structures underlie numer-
ical processing in both humans and artificial networks per-
forming numerical and ordinal comparison tasks (Sheahan,
Luyckx, Nelli, Teupe, & Summerfield, 2021; Nelli, Braun,
Dumbalska, Saxe, & Summerfield, 2023). Building on these
findings, we examine whether mapping between nonsymbolic
and symbolic number representations enforces an alignment
of their respective neural representations, thereby enabling
generalization to symbolic numerical tasks. We also inves-
tigate how subsequent explicit symbolic training affects this
alignment.



Methods
Tasks
Dot stimuli (nonsymbolic). Our dataset consisted of stim-
uli images with 1-9 dots (224 × 224 pixels). All dots in an
image were of a single color, but colors were randomly gen-
erated across images. All images were generated with a tar-
get total area and target convex hull area as parameters. For
each numerosity 1-9, we generated 12 images (10 training, 2
testing) each for a set of 50 different parameters, resulting in
9 × 12 × 50 = 5400 images (4500 training, 900 testing). For
visualization purposes, the stimuli are shown in white and red
(Figure 1), or black and white (Figure 2) in the paper.

Numeral stimuli (symbolic). Our dataset consisted of
stimuli images with numerals from 1-9, using a subset of
handwritten digits from the MNIST dataset (Deng, 2012).
For each numerosity n we sampled the first 500/100 (train-
ing/testing) handwritten digits n from the MNIST dataset, to
match the dot stimuli sample size. To match the physical size
of the dot and numeral stimuli, the MNIST pictures were up-
sampled from their original size (28 × 28) to (224 × 224) by
replicating each pixel uniformly into a constant subregion of
size (8 × 8) without applying any additional filtering.

Symbolic, nonsymbolic and cross-format comparisons.
Comparison task stimuli consisted of two different numbers
between 1 and 9, each represented by a (224 × 224) image.
The desired model output was a categorical one-hot coded
choice describing which number was higher (i.e. left or right).
We used 3 different comparison tasks: (1) nonsymbolic for-
mat comparison, (2) symbolic format comparison, and (3)
cross-format comparison, where one number was represented
as a symbolic (numeral) and the other as a nonsymbolic (dot)
image. For each task, we created a training/testing set of
4500/900 comparisons, by uniformly sampling pairs of two
different numbers between 1 and 9 for each stimuli.

Numerical cross-labeling. We considered numerical label-
ing task where an image of nonsymbolic or symbolic numbers
had to be associated with a label from 1-9. The input stim-
ulus was a single (224 × 224) image, and the desired output
was a categorical one-hot choice representing a number be-
tween 1 and 9. We used three different tasks, where learn-
ing was based on (1) nonsymbolic stimuli only (4500/900
training/testing images), (2) symbolic stimuli only (4500/900
training/testing images), and (3) both symbolic and nonsym-
bolic stimuli (9000/1800 training/testing images, merging the
datasets from the first two tasks).

Model
Biologically inspired model of the dorsal visual pathway.
Our model is adapted from CORnet-S (Kubilius et al., 2018)
to replicate the dorsal visual pathway involved in numerical
cognition, including four key layers – visual layers V1, V2,
V3 and the intraparietal sulcus (IPS) layer, corresponding to
key brain regions involved in numerical information process-

ing from visual stimuli (Skagenholt, Träff, Västfjäll, & Sk-
agerlund, 2018; Castaldi, Piazza, Dehaene, Vignaud, & Eger,
2019). The output dimension of the last linear decoder of
CORnet-S was changed based on task requirements (2 classes
for the comparison task and 9 classes for the quantification
tasks). For additional details, see (Mistry et al., 2023).
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Figure 1: Numerical processing neural network. Illustra-
tion of our biologically inspired neural network model pro-
cessing numerical information. The top panel shows the
model performing comparison tasks (determining which side
contains more), while the bottom panel shows quantification
tasks (determining how many items are present).

Developmentally inspired training. To mimic develop-
mental learning and how children are gradually exposed to
numerical comparisons, we trained our model in three stages
(Figure 2): (1) nonsymbolic comparison training for 20
epochs, (2) nonsymbolic-symbolic mapping training for 20
epochs, and finally (3) symbolic comparison training for 20
epochs. We compared two ways of performing the interme-
diate mapping training, using: (1) cross-format comparison,
and (2) cross-label mapping. We observed partial forgetting
of dot comparison when the mapping stage involved cross-
labeling, but not when we used cross-format comparison. We
hence interleaved cross-label mapping training with nonsym-
bolic dot comparison (but not with symbolic comparison).

Behavioral analysis
Accuracy and pair accuracy. Unless specified otherwise,
accuracy refers to the testing accuracy for the comparison
task, measured across all stimuli. We refer to accuracy as
the accuracy across all stimuli. We refer to the (n, p) pair
accuracy as the accuracy across all the stimuli for which the
underlying pair of numbers is (n, p).

Generalized cross-format and symbolic pairs. We define
generalized symbolic (resp. cross-format) pairs as the pairs
of numbers (n, p) such that the symbolic (resp. cross-format)
(n, p) pair accuracy at the end of the mapping (resp. nonsym-
bolic) training stage is above 95%.
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Figure 2: Developmental training progression. Stage 1
(Nonsymbolic training): The model learns to compare dot
arrays. Stage 2 (Mapping training): The model learns to
connect symbolic and nonsymbolic representations through
either cross-format comparison or cross-labeling. Stage 3
(Symbolic training): The model learns numeral comparison.
Throughout the paper, dot comparison tasks are represented
in red, numeral comparison tasks in blue, cross-format com-
parison task in green, and cross-labeling task in brown.

Forgotten nonsymbolic pairs. Similarly, we define the for-
gotten nonsymbolic pairs as the pairs of numbers (n, p) such
that the nonsymbolic (n, p) pair accuracy is above 95% at the
end of the mapping symbolic training stage but below 55% at
the end of the symbolic training stage.

Representational analysis
Neural representational similarity. To compute neural
representational similarity (NRS) (Kriegeskorte, 2008), we
examined the neural response of the model in the quantifi-
cation tasks. In other words, we provided (224 × 224) pic-
tures containing either a single dot array or a single numeral
as stimuli to the model and examined its responses. Specifi-
cally, for each number n and format f ∈ s,ns (i.e. symbolic
or nonsymbolic), we computed the average response x̄n, f of
the model’s IPS layer across pictures in the test datasets. We
then computed the similarity between two average responses

x̄n, f and x̄n′, f ′ as 1− ∥x̄n, f −x̄n′, f ′∥2
max

p,p′,g,g′
∥x̄p,g−x̄p′,g′∥2

.

Multi-dimensional scaling. We computed a 3-dimensional
Multi-Dimensional Scaling (MDS) (Mead, 1992) of the aver-
age responses of the model’s IPS layer x̄n, f for each number n
and format f , by precomputing the norm-2 distance between
averages ∥v− x̄n′, f ′∥2. Since the MDS space is defined up to
an orthonormal transformation, we rotated the MDS repre-
sentation such that the first dimension of a number n is best
aligned with n. The representation on the first rotated dimen-
sion is denoted as rn, f .

Representational alignment. To compute the alignment
between symbolic and nonsymbolic representation, we mea-
sured: (1) the correlation between rn,s and rn,ns across
numbers n, and (2) the normalized average distance
1
9

9
∑

n=1

|rn,s−rn,ns|
|r9,ns−r1,ns| . For quantitative analysis of alignment, we

used only the first dimension of rotated MDS, but for visual-
ization purposes, we displayed the two first dimensions.

Code availability
Code will be made available on GitHub upon publication at
https://github.com/scsnl/Strock CogSci 2025.

Results
Generalization from cross-format comparison
Our first objective was to determine how and when
generalization to symbolic comparison emerges during
developmentally-inspired training. We examined perfor-
mance through a three-stage training process that mimics nu-
merical development in children. We designed the cross-
format comparison mapping to simulate how children might
establish numerical meaning by directly comparing quantities
across formats, such as when they compare a set of objects
to a written numeral. This approach mirrors natural learn-
ing situations where children must determine which of two
quantities (one symbolic, one nonsymbolic) is larger, poten-
tially establishing more integrated magnitude representations
through relational judgments.
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Figure 3: Performance of model developmentally trained
with a cross-format comparison training. (Top) Solid line
represents the accuracy in test on the dot, cross-format, or nu-
meral comparison task. The color of shaded area represents
the new task that was trained. (Bottom) Pairs that are gener-
alized and forgotten across training, from generalized cross-
format pair in Stage 1, generalized symbolic pair in Stage 2,
to forgotten nonsymbolic pair in Stage 3.

https://github.com/scsnl/Strock_CogSci_2025
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Figure 4: Progressive alignment of symbolic and nonsym-
bolic number representation for model developmentally
trained with a cross-comparison training. (Top) Neural
representational similarity (NRS) matrices revealing distance
effects (where numbers closer in value have more similar neu-
ral representations) across training stages and mapping condi-
tions. Numeral stimuli are represented in blue, and dot stim-
uli are represented in red. (Bottom) Multidimensional scaling
(MDS) visualizations showing how symbolic (blue) and non-
symbolic (red) number representations align across training
stages.

Initial nonsymbolic comparison learning. In Stage 1,
nonsymbolic training resulted in high levels of performance
on nonsymbolic comparisons, as expected, but also partial
generalization to cross-format comparisons, achieving accu-
racy above 65% compared to the 50% chance level (Figure 3,
top panel). The strongest early generalization was found for
number pairs containing either dot or numeral 1 (Figure 3,
bottom panel, left). When 1 appears in a comparison, the out-
come becomes deterministic - when 1 dot appears on the left,
the right side always has more, and vice versa. Interestingly,
this generalization occurred not only for dot 1 but also for
numeral 1, suggesting early cross-format integration for this
specific number.

Robust generalization to symbolic comparison. In Stage
2, we examined the effects of cross-format mapping. When
mapping was established through cross-format comparison
(direct comparison between dot arrays and numerals), the
model achieved substantial generalization to purely sym-
bolic comparison tasks, reaching 82% accuracy after map-
ping training (Figure 3, top panel). This generalization
showed a distinct directional bias, with higher accuracy for
pairs where the right number exceeded the left number (Fig-
ure 3, bottom panel, middle). This asymmetry resembles the
SNARC (Spatial-Numerical Association of Response Codes)
(Dehaene, Bossini, & Giraux, 1993) effect in human cogni-
tion, suggesting the emergence of a directional mental num-
ber line.

Neural representational development. Representational
similarity analysis revealed that numerical distance effects -
a hallmark of mature numerical cognition - emerged for sym-
bolic representations by the end of mapping training (Fig-
ure 4, top panel, middle). This indicated rapid integration of
symbolic numbers into a coherent representational structure.
Multidimensional scaling demonstrated strong alignment be-
tween symbolic and nonsymbolic representations after cross-
format comparison mapping, with correlation between repre-
sentations increasing dramatically from 0.25 to 0.94 and nor-
malized average distance decreasing from 0.53 to 0.12 (Fig-
ure 4, bottom panel, middle). This robust alignment provides
a mechanistic explanation for the successful generalization
observed.

Effect of symbolic specialization. In Stage 3, we then ex-
amined the effects of continued training in the symbolic for-
mat alone. During symbolic training, the model maintained
its generalization capacity but showed moderate forgetting of
nonsymbolic skills, with accuracy declining from above 94%
to around 75% (Figure 3, top panel). This forgetting was rela-
tively evenly distributed across different numerical distances
(Figure 3, bottom panel, right). Representational analysis re-
vealed that symbolic training maintained high correlation be-
tween symbolic and nonsymbolic representations (0.96) but
increased their average distance from 0.12 to 0.28 (Figure 4,
bottom panel, left). This suggests that while ordinal relation-
ships remained intact, the representational spaces began to
diverge, explaining the selective forgetting observed.

Generalization from cross-labeling
We conducted parallel analysis by altering Stage 2 to imple-
ment cross-label mapping to model the conventional educa-
tional approach where children learn to associate both sym-
bols and nonsymbolic quantities with the same verbal la-
bels (e.g., learning that both ”7” and seven objects are called
”seven”). This approach mirrors explicit instructional meth-
ods that rely on categorization and labeling rather than re-
lational judgments, potentially creating separate representa-
tional pathways that converge on common output labels.

Limited generalization to symbolic comparison. When
mapping was established through cross-labeling (associat-
ing both formats with the same numerical labels), the model
showed minimal generalization to symbolic comparison,
achieving only 59% accuracy after mapping training despite
88% accuracy on its training task (Figure 5, top panel). Gen-
eralized symbolic pairs did not show a clear directional pat-
tern, but scattered generalization across specific number pairs
(Figure 5, bottom panel, middle).

Neural representational development. Symbolic numer-
ical distance effects emerged only after explicit symbolic
training in Stage 3, not during the mapping phase itself (Fig-
ure 6, top panel). This delayed emergence of structured sym-
bolic representations indicates a weaker integration of nu-
merical meaning during label-based mapping. Multidimen-
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Figure 5: Performance of model developmentally trained
with a cross-labeling training. (Top) Solid line represents
the accuracy in test on the dot, cross-format, or numeral com-
parison task. The color of shaded area represents the new
task that was trained. (Bottom) Pairs that are generalized and
forgotten across training, from generalized cross-format pair
in Stage 1, generalized symbolic pair in Stage 2, to forgotten
nonsymbolic pair in Stage 3.

sional scaling revealed limited alignment between symbolic
and nonsymbolic representations after cross-labeling map-
ping, with correlation reaching only 0.47 and average dis-
tance remaining at 0.23 (Figure 6, bottom panel, middle).
This weak alignment explains the poor generalization to sym-
bolic comparison observed after mapping training.

Effect of symbolic specialization. During symbolic train-
ing in Stage 3, the model improved its symbolic performance
while demonstrating forgetting of nonsymbolic skills, similar
to the comparison mapping condition (Figure 5, top panel).
However, in this case, the pattern of forgotten pairs was con-
centrated on smaller numerical distances (Figure 5, bottom
panel, right). Interestingly, the representational alignment ac-
tually improved during symbolic training, with the correla-
tion increasing to 0.92 and the distance slightly decreasing
to 0.19 (Figure 6, bottom panel, right). This suggests that
explicit symbolic training can compensate for weaker initial
mapping, although this improved alignment develops too late
to support spontaneous generalization.

Comparative analysis of mapping strategies
Direct comparison of the two mapping approaches reveals
fundamental differences in how numerical representations de-
velop. Cross-format comparison mapping produces earlier
and stronger alignment between symbolic and nonsymbolic
representations, facilitating robust generalization before ex-
plicit symbolic training. In contrast, cross-labeling mapping
creates weaker initial alignment, requiring explicit symbolic
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Figure 6: Progressive alignment of symbolic and non-
symbolic number representation for model developmen-
tally trained with a cross-labeling training. (Top) Neural
representational similarity (NRS) matrices revealing distance
effects (numbers closer in value have similar neural repre-
sentations) across training stages and mapping conditions.
Numeral stimuli are represented in blue, and dot stimuli in
red. (Bottom) Multidimensional scaling (MDS) visualiza-
tions showing how symbolic (blue) and nonsymbolic (red)
number representations align across training stages.

training to achieve similar representational structure. Specifi-
cally, in Stage 2, representational alignment reaches a high
correlation of 0.94 for cross-comparison but only 0.46 for
cross-labeling, and distances of 0.12 for cross-comparison
but only 0.23 for cross-labeling. The distinctive patterns
observed across both conditions highlight representational
alignment as the key mechanism underlying numerical se-
mantic generalization. Strong alignment enables transfer of
numerical meaning across formats, while weak alignment
limits generalization despite successful task-specific learning.

Discussion
Motivated by the developmental trajectory of numerical cog-
nition in humans, we investigated how symbolic number rep-
resentations emerge in artificial neural networks. We em-
ployed a systematic approach using comparison paradigms
and mapping tasks to examine this process in detail. We
trained a neural network through a developmental sequence,
beginning with nonsymbolic number comparison, followed
by one of two mapping approaches between symbolic and
nonsymbolic representations, and concluding with symbolic
number comparison training. The two mapping approaches
we compared were: (1) a direct mapping through cross-
labeling, where the model learned to associate both for-
mats with common labels, and (2) an indirect mapping
through cross-format comparison, where the model learned
to compare numbers across formats. At each training stage,
we tested the model with comparison tasks in dot, cross,



and symbolic formats. Representational similarity analy-
sis (RSA) (Kriegeskorte, 2008) and multidimensional scal-
ing (MDS) (Mead, 1992) revealed that successful general-
ization from nonsymbolic to symbolic numerical processing
coincided with the alignment of their neural representations
in the model’s intraparietal sulcus layer, with stronger align-
ment producing more robust generalization across numerical
formats.

Our findings revealed several key insights into numerical
representation in neural networks. First, while both mapping
conditions ultimately enabled accurate comparison of both
symbolic and nonsymbolic numbers, only the indirect map-
ping approach (cross-format comparison) produced immedi-
ate generalization to purely symbolic comparisons. This un-
expected finding suggests that cross-format comparison may
create stronger representational linkages than shared labeling
alone. Second, after completing the full training sequence,
the models maintained above-chance performance on non-
symbolic and cross-format comparisons, despite some de-
cline in accuracy. This pattern mirrors developmental obser-
vations in humans, where early numerical skills persist even
as symbolic proficiency increases.

Notably, our results showed a unique pattern of general-
ization during early training stages. As shown in Figure 3,
the model demonstrated partial generalization to cross-format
comparison tasks even before explicit mapping training, par-
ticularly for pairs containing the numeral 1. This early gen-
eralization to specific numerals suggests that some symbolic
representations may be more readily integrated with their
nonsymbolic counterparts, perhaps due to their distinctive vi-
sual features or frequency in training. This directional bias,
absent in the cross-labeling mapping condition, bears strik-
ing resemblance to the SNARC (Spatial-Numerical Associ-
ation of Response Codes) effect observed in human cogni-
tion, where numbers are mentally represented along a left-
to-right spatial continuum. The emergence of this directional
preference suggests that the cross-format comparison train-
ing may naturally induce spatial-numerical associations sim-
ilar to human mental number lines, with smaller numbers
mapped to the left and larger numbers to the right. The ab-
sence of this effect in the cross-labeling mapping condition
indicates that comparison-based learning, which inherently
focuses on relative magnitude relationships, may be partic-
ularly important for developing these spatial-numerical as-
sociations. Neural representational analyses yielded partic-
ularly compelling results, revealing the emergence of numer-
ical distance effects—a hallmark of human numerical cogni-
tion—in both symbolic and nonsymbolic comparisons after
training. These distance effects emerged at different train-
ing stages depending on the mapping condition, with cross-
format comparison mapping producing distance effects for
both symbolic and cross-format stimuli by the end of map-
ping training, while cross-labeling required symbolic training
to achieve similar effects (Figures 4 and 6, top panels). Mul-
tidimensional scaling revealed that successful generalization

coincided with structural alignment between symbolic and
nonsymbolic representational spaces. Importantly, stronger
alignment through indirect mapping corresponded with more
robust generalization to symbolic tasks, while weaker align-
ment through direct mapping produced more limited gener-
alization. The ”dot number line” and ”numeral number line”
progressively aligned through training stages, with correla-
tion values increasing from 0.25 to 0.94 in the cross-format
comparison condition but only reaching 0.47 in the cross-
labeling condition at the mapping stage (Figures 4 and 6,
bottom panels). This quantitative difference in alignment
strength directly corresponded to the difference in general-
ization performance. These findings extend previous work on
representational alignment in rank comparison tasks (Nelli
et al., 2023) to the domain of numerical cognition, demon-
strating that similar principles apply across different cogni-
tive domains. Critically, we show that this alignment can
emerge through sequential learning of comparison tasks, sug-
gesting it may be a fundamental mechanism supporting cross-
domain generalization. The differential effectiveness of our
mapping approaches has significant implications for educa-
tional interventions. Recent work with children experienc-
ing mathematical learning difficulties has shown that training
with indirect cross-format mapping not only normalized neu-
ral representations of numbers but also improved arithmetic
problem-solving skills (Park et al., 2024). This suggests that
the representational alignment we observed in our model may
be a crucial mechanism supporting broader mathematical de-
velopment. Our study opens several promising avenues for
future research, including: (1) investigating whether children
with mathematical learning disabilities show reduced align-
ment between symbolic and nonsymbolic number represen-
tations; (2) identifying specific neural mechanisms that might
impair this alignment process; and (3) examining whether
alignment-focused interventions can facilitate generalization
to a broader range of mathematical skills beyond comparison
tasks. In conclusion, our findings highlight representational
alignment as a fundamental mechanism underlying the inte-
gration of different numerical formats and the emergence of
numerical semantics in neural networks. This insight not only
advances our theoretical understanding of numerical cogni-
tion but also offers promising directions for educational in-
terventions to support mathematical development.
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